About 507,000 results
Open links in new tab
  1. regression - When should I use lasso vs ridge? - Cross Validated

    Ridge regression is useful as a general shrinking of all coefficients together. It is shrinking to reduce the variance and over fitting. It relates to the prior believe that coefficient values shouldn't be too large …

  2. regression - How to calculate the slope of a line of best fit that ...

    Dec 17, 2024 · This kind of regression seems to be much more difficult. I've read several sources, but the calculus for general quantile regression is going over my head. My question is this: How can I …

  3. Multivariable vs multivariate regression - Cross Validated

    Feb 2, 2020 · Multivariable regression is any regression model where there is more than one explanatory variable. For this reason it is often simply known as "multiple regression". In the simple …

  4. regression - Converting standardized betas back to original variables ...

    I have a problem where I need to standardize the variables run the (ridge regression) to calculate the ridge estimates of the betas. I then need to convert these back to the original variables scale.

  5. regression - Interpreting the residuals vs. fitted values plot for ...

    Consider the following figure from Faraway's Linear Models with R (2005, p. 59). The first plot seems to indicate that the residuals and the fitted values are uncorrelated, as they should be in a

  6. regression - Difference between forecast and prediction ... - Cross ...

    I was wondering what difference and relation are between forecast and prediction? Especially in time series and regression? For example, am I correct that: In time series, forecasting seems to mea...

  7. regression - What is residual standard error? - Cross Validated

    A quick question: Is "residual standard error" the same as "residual standard deviation"? Gelman and Hill (p.41, 2007) seem to use them interchangeably.

  8. correlation - What is the difference between linear regression on y ...

    The Pearson correlation coefficient of x and y is the same, whether you compute pearson(x, y) or pearson(y, x). This suggests that doing a linear regression of y given x or x given y should be the ...

  9. When conducting multiple regression, when should you center your ...

    Jun 5, 2012 · In some literature, I have read that a regression with multiple explanatory variables, if in different units, needed to be standardized. (Standardizing consists in subtracting the mean and dividin...

  10. How to derive the standard error of linear regression coefficient

    another way of thinking about the n-2 df is that it's because we use 2 means to estimate the slope coefficient (the mean of Y and X) df from Wikipedia: "...In general, the degrees of freedom of an …